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Abstract: In practice, a purely data-driven approach for building a generic 2D or 3D stress-strain relation-

ship without introducing physical constraints (assumptions) is rather difficult to be embedded in boundary

value problems’ (BVP) calculations, as the strain paths may be highly variable. With machine learning

(ML)-based constitutive models, it is not the ’best’ predictions that lead to the success of the computation,

but, conversely, rather the worst predictions that often lead to the failure of the computation. To address

the problem of insufficient generalization, the material ’cell’ is proposed with the assumptions of the so-

called Critical-State-Unified-Hardening (CSUH) [1] model working as the physics constrains in the PyTorch

framework. Based on strain-stress sequence data from explicit FEM-DEM (exFEM-DEM) simulations, the

parameters of a material ’cell’ were optimized with the Adam algorithm and error backpropagation. Eight

sets of (ϵij − σij) sequences in one exFEM-DEM BVP simulation are used for model training, and two

different BVP simulations are utilised to assess the optimized model.
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1 Introduction

With the advent of ML, especially neural networks (NN ), recent research focuses on rebuild-
ing constitutive models (i.e. mapping ϵij → σij) via ML methods. However, it is impossible
to cover the entire (ϵij , I)-space without simplifying assumptions. Such models are known
to generalize poorly, and high prediction errors can cause BVP calculations to become non-
sensical and/or crash. Most studies focus on improving the best prediction accuracy. But,
unfortunately, there is rarely a proper method to guarantee the ML model’s poorest per-
formance is above some acceptable threshold. Here we introduce the CSUH model as the
physical constraint for the ML model to improve the generalization.

2 Methodology

All constitutive models can generally be represented as

I = M (ϵ̇ij , I0) , (1)

where I is the set of state variables, including but not limited to the stress tensor σij, I0
is the initial state before the strain increment ϵ̇ij, and M is the material ’cell’ employed
in the recurrent structure, as is shown in Fig. 1(a). This equation is very similar to the
recurrent neural network format h = RNNCell(x, h0), where RNNCell is a network cell, x is the
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input, h is the hidden state (Fig. 1(b)). This implies that the training process of M is very
similar to the training process of a recurrent neural network given the CSUH-assumptions,
i.e. M ≜ RNNCell | CSUH formulas.

Figure 1: The comparison of the architecture of the material cell and a RNN cell-based ML method

3 Conclusions

Figure 2: Comparison of the biaxial compression in exFEM-
DEM and exFEM-ML

The comparison of biaxial com-
pression simulations is displayed in
Fig. 2. The curves of maximum a

mean the largest value among all
of the accelerations of the nodes.

The physics-constrained M-cell
trained on the datasets collected
from the exFEM-DEM simula-
tions can be used to properly re-
produce the exFEM-DEM simula-
tion under various circumstances.
The physics constraints are effec-
tively implemented by recognizing
the state equations with the train-
ing process of a recurrent structure and improving the model’s generalization [2]. Recurrent
neural networks are known to induce a corresponding Gaussian process [3], posing a possible
route for incorporating further prior knowledge on the underlying PDE [4].
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